叉叉电子书 > 其他电子书 > 物理学和哲学 >

第31章

物理学和哲学-第31章

小说: 物理学和哲学 字数: 每页3500字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



现反物质而来的)以后,我认为就不需要什么进一步的突破去理解基本(毋宁说是非基本)粒子了。我们只须学会用基本对称性这个新的、不幸是很抽象的概念去进行工作;但这可能是够糟糕的了。
'侯德彭译自《美国物理学期刊》(American Journal of Physics)1975年 5月号'

基本粒子是什么?

“基本粒子是什么?”这个问题当然必须首先由实验来回答,而且必定要涉及哲学思考。因此,我首先要对近五十年来的基本粒子物理学的最重要的实验成果作一简要的综合评述,并试图说明:如果人们无成见地考察这些实验,那末这些成果已经在相当大的程度上回答了上述问题,从而理论家也没有什么更多的话可补充的了。然后,我在第二部分将补充探讨与基本粒子概念相联系的哲学问题。因为,我认为,基本粒子理论的某些错误的发展——而我就怕确有这样的错误发展——是由于理论的创立者固执地对哲学模不关心,可是他们实际上不自觉地从坏的哲学出发从而由于成见提出了不合理的问题。人们或许可以稍为有点夸张地说,好的物理学不自觉地被坏哲学腐蚀了。最后我将讨论这些成问题的发展,它们可以和我亲身经历过的量子力学的历史中的错误发展相对比,我还将提出人们怎样才能避免这样的错误的一些建议。因此,这个报告的结论应该还是比较乐观的。
最重要的实验结果和它们的理论解释
我首先谈谈实验事实。差不多在五十年前,狄拉克在他的电子论中预言,除电子之外,必定还有它的反粒子——正电子;不多几年之后,安德森和布莱凯特(Blackett)用实验证明了正电子的存在(它在电子偶的产生过程中出现)以及所谓反物质的存在。这是头等重要的发现。因为在这以前,人们一般设想有两类基本粒子:电子和质子,它们与一切其他粒子的不同之点是,它们是决不能改变的,因此它们的数目也总是守恒的。正因为如此,人们称它们为基本粒子。一切物质被认为最终都应该由电子和质子组成。电子仍的产生和正电子的实验证明表明,这种设想是错误的。电子既可以产生,也可以湮灭;因此它们的数目决不守恒;它们不是原来意义上的基本粒子。
第二个重要步骤是F.约里奥和I.居里发现人工放射性。人们从许多试验知道,一个原子核可以通过发射粒子转变为别的原子核,只要能量、角动量、电荷等守恒定律允许这种转变。能量转化为质量,这在爱因斯坦的相对论中早已被认为是可能的,现在就成了经常观测到的现象了。这样也就谈不到什么粒子数的守恒了。可是还有一些可用量子数表征的物理性质——例如角动量或电荷,它们的量子数可以取正值或负值,而且守恒定律对于它们是有效的。
在三十年代,还有另一个重要的实验发现。人们证实了,在宇宙辐射中有能量很高的粒子,这些粒子和其他粒子碰撞时,例如和照相底片乳胶中的一个原子核相碰撞时,可以发射出有许多次级粒子的簇射。有一个时期,许多物理学家认为,这种簇射只能由原子核中的一种级联反应而形成;可是后来弄清楚了,实际上仅仅两个高能粒子碰撞也有理论上所预测的许多次级粒子产生。在四十年代末,鲍威耳发现了在这些簇射中起主要作用的
π介子。从而表明,在能量很高的粒子的碰撞中能量转化为物质是十分普遍的决定性过程,因此说什么“初始粒子的分裂”显然已没有什么意义了。“分裂”这个概念在实验上已经失去了意义。
在五十年代和六十年代的实验中,这种新的情况一再被证实;发现了许多长寿命的和短寿命的新粒子,而对于这些粒子由什么组成的问题,不再能作出明确的回答,因为这个问题没有理性的意义。比如说,一个质子可以由中子和π介子或者由Λ超子和K介子或者由两个核子和一个反核子合成;或者可以简单地说,一个质子由连续物质所组成;而所有这些陈述都是同样正确或者同样错误。基本粒子和复合粒子的区分从此根本消失了。这或许是近五十年来最重要的实验结果。
由于这种发展,实验迫使人们作这样一种类比:基本粒子多少类似于一个原子或一个分子的定态。有一整套粒子谱,就象铁原子或分子有一套定态谱一样,在最后一个例子中,我们既可以设想为一个分子的不同定态,也可以设想为化学中许多不同的分子。对于粒子我们可以说“物质”谱。实际上,六十年代和七十年代用大加速器所做的实验证明了这种类比符合迄今为止的一切经验。就象原子的定态一样,粒子也可以用量子数来表征,也就是用对称性和变换性来表征,结合这些量子数的精确的或者近似有效的守恒定律决定了转变的可能性。就象一个受激氢原子的空间转动状态决定了它的变换特性,决定了它是否能够通过发射一个光量子跃迁到一个较低的态一样,也可以提出这样的问题:一个φ玻色子能否发出一个
π介子衰变为一个ρ玻色子,是不是也是由这样的对称性决定的,就象处于不同定态的同种原子有很不相同的寿命一样,粒子也有很不相同的寿命。一个原子的基态是稳定的,它有无限长的寿命,而电子、质子、氖核等粒子也具有同样的特性。可是这些稳定粒子决不比不稳定粒子更为“基本”。氢原子的基态可由薛定谔方程导出,而氢原子的激发态也由同一个薛定谔方程导出。同样,电子和光量子也决不比一个Λ超子更基本。
因此,近年来的实验粒子物理学在其发展过程中履行着类似于二十年代初光谱学所履行的任务。就象当时出现了把所有原子的电子壳层的定态收集在内的大表册[所谓的帕邢图(Paschen
Gotze)'中一样,现在也有每年一次的全面的关于粒子性质的概览(Reviews of Particle
Properties),其中记载了物质的定态和它们的变换特性。这种编制这样内容丰富的表册的工作,同天文学家的天文观测概览相仿,很自然,每一个观测者希望有时能在他的领域内找到特别有趣味的对象。
但是,在原子的电子壳层物理学和粒子物理学间也有特征性的区别。在原子壳展中,人们所接触的能量是如此之低,以致相对论的特征可以忽略不计;因此人们可以利用非相对论性量子力学来表述。这意味着,以原子壳层物理学为一方,以粒子物理学为另一方,它们的有关对称群是不同的。原子壳层物理学中的伽利略群在粒子物理学中由洛伦兹群来替换;同时,在粒子物理学中加入了象同位旋群这样的新群,它和
SU2 群是同构的,然后加入了SU3群、标度群以及其他等等。确定粒子物理学中的有关群是一项重要的实验任务,而这在过去的二十年中已经在很大程度上解决了。
从原子壳层物理学我们可以了解到,在明显地只描述近似有效的对称性的那些群中,我们可以区分两种根本不同类型的群。例如我们想到光谱中的空间转动的
O3群和与光谱中的多重结构有关的O3 X O3群。量子力学方程对于空间转动群是严格不变的,因此具有较高角动量的原子伪态是严格地简并的,也就是说,有几个态具有严格相同的能量。只有当原子处于外部电磁场中时,这些态才分裂开,而象塞曼效应或斯塔克效应这些众所周知的精细结构才显示出来。如果系统的基态象一个晶体或一个铁磁体的基态那样对于转动不是不变的,那末这种简并性也可以被破坏。在这种情况下,能级的分裂也会出现;一个铁磁体中的一个电子的两个自旋方向不再严格属于同一能量。此外,按照哥耳德斯通(Goldstone)的著名理论,其能量随着波长的增长而趋近千零的玻色子也是存在的,在铁磁体的场合,布洛赫的自旋波和磁振子代替了哥耳德斯通波。
对于O3 X O3群,情况就完全不同了,从这种群产生了光谱的众所周知的多重线。这里涉及到的是近似的对称性,只要在某个范围自旋和轨道相互作用很小,只要人们可以因此把电子的自旋和轨道互不相关地旋转,而不会使相互作用改变多少,这种对称性就实现了。因此这种O3
X O3对称性来自系统的动力学,从而它也只是在光谱的某一部分才适用的近似对称性。在经验上,我们可以用这样的办法来最明确地区分两种破缺了的对称性:对于基态的破缺的基本对称性,必定存在这些按照哥耳德斯通理论其静止质量为零或属于远程力的玻色子。如果人们找到了它们,那末就有理由认为,基态的简并在这里起重要作用。
如果我们把这个原子壳层物理学的经验应用到粒子物理学方面,那本根据实验它们十分接近,洛伦兹群和SU2
群即同位族群被解释为作为自然定律基础的基本对称性。然后电磁力和引力作为与基态的破缺的对称性相联系的远程力而出现。更高的群SU3,SU4,SU6或SU2XSU2,SU3XSU3等等这时应当被当作为动力学的对称性,就象原子壳层物理学中的O3XO3群一样。至于伸缩群或标度群,我们可以怀疑,是否应当把它们算在基本对称性之内;它们会由于有限质量的粒子的存在和与宇宙中的大物体有关的引力而被破坏。由于它们和洛伦兹群的密切关系,人们也许应该把它们列入基本对称性。刚才描述的把破缺的对称性同两种基本类型相等同,如我已经说过的那样,是通过实验结果而逐渐接近的,但是我们也许还不能说最终确定了这些对称性的类型。最重要的是,对于用以分析谱系现象的对称群,我们必须提出(如果可能)也必须回答这样的问题:它们究竟属于两种基本类型中的哪一个。
还需要指出原子壳层物理学的一个特征:在光谱中有一些不能组合或者正确地说只是微弱地组合的谱项系,就象仲氦和正氦光谱那样。在粒子物理学中,人们也许可以把费米子谱分为重子和轻子的这种划分同这种特征相比较。
因此,原子和分子的定态同基本粒子物理学中的粒子间的类比是近乎完备的,从而在我看来,把我在开始时提出的“基本粒子是什么?”这个问题定性而又完全地回答了。但只是定性地回答!于是对理论家提出了进一步的问题:是否这种定性的关系也能够以定量的计算作为基础?为此首先必须回答一个初步的问题:定量地理解一个谱系究竟是什么意思,
为此目的,不仅在经典物理学中而且在量子力学中都有一系列例子。我们可以设想一个钢片的弹性振动的频谱。如果人们不满足于定性的理解,那末我们必须从钢片的弹性出发,这种弹性应当用数学加以表述。在这一点做到之后,人们还必须加上边界条件,比如说钢片是圆的或是方的,它是被绷紧了还是没有绷紧,由此人们至少可以在原则上算出弹性或声学振动的频谱系。诚然,由于问题的复杂程度,确实不能严格算出一切振动频率,但是总能够算出那些具有最少的波节数的最低的振动频率。
因此,为了做到定量的理解,有两个要点是必不可少的:关于钢片的动力学关系的严格数学表述的知识和边界条件,后者人们可以看作是“偶然的”,也就是说是由附近的环境来确定的;人们也可以把钢片切割成别的形状。空腔共振器的电动力学振荡的情况与此相仿。麦克斯韦方程

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的