叉叉电子书 > 其他电子书 > 物理学和哲学 >

第29章

物理学和哲学-第29章

小说: 物理学和哲学 字数: 每页3500字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



关于辐射本身又怎样呢,我们可以使用麦克斯韦理论的一般概念。从这个观点看来,原子与辐射之间的相互作用似乎是一切困惑的根源。在定态时,不存在这样的相互作用,因此看来可以用经典力学来处理。但能不能应用麦克斯韦的辐射理论呢?我不妨提一句,采取这种观点大概是不必要的。人们本来可以更认真地采用光量子的观点。本来可以说,我们看到的光的干涉条纹,是由于对光量子运动的一些附加条件而产生的。我隐约记得早年同温采尔(Wentzel)的一次讨论,那次他向我解释过,有可能使光量子的运动量子化,从而得以解释干涉条纹。但不管怎样,这不是玻尔采取的观点。无论从哪里开始,总要碰到一大堆困难,所以我想比较详细地谈一下这些问题。
首先,曾有强大的论据支持定态的力学模型。我已提到过卢瑟福的实验。于是,原子中电子的周期性轨道就很容易同量子条件联系起来。因此,定态的概念可以同电子的特定椭圆轨道的概念联结起来。玻尔在他早期的演讲中,常常展示电子在它们绕原子核的许多轨道上运动的图象。
在好些有趣的场合,用这模型可处理得很完满。首先是在氢光谱中。再有索末菲关于氢光谱线相对论性精细结构的理论,以及所谓斯塔克效应——在电场中谱线的分裂。因之,大量材料似乎表明,量子化轨道同分立定态的这种联系是正确的。
另一方面,也有其他理由反驳说,这样的图象不会是正确的。我记起同斯特恩的一次谈话。他在1913年告诉我,当玻尔的第一篇论文发表后,他曾对一个朋友说,“要是玻尔刚发表的那些谬论是正确的话,我就不想再当物理学家了。”
现在我来指出这个模型的困难和错误。最严重的困难或许是如下所述。电子在这模型中作由量子条件规定的周期运动,因而它要以一定的频率绕原子核运动。然而,这个频率绝不会在观察中出现。我们决不会看到它。我们看到是些不同的频率,每一频率决定于从一个定态到另一定态的跃迁中的能量差。还有关于简并性的一个困难。索末菲引进了磁量子数。按照这种量子条件,当某方向有磁场时,原子绕这个磁场的角动量必须为±1或0。但如在另一方向取一不同磁场,就必须对这个不同的方向进行量子化。然而,可以先在某一方向有一极其微弱的磁场,而在很短时间之后变为另一方向。磁场是太弱了,不足以使原子转过去。因之同量子条件的矛盾看来无法避免。
正好五十年前我同玻尔的第一次讨论;就是围绕着这些难点之一进行的。玻尔在哥丁根作过的一次讲演中说过,在一恒定电场中,可以按量子条件算出定态的能量,而克拉麦斯(Kramers)关于二次斯塔克效应的最近计算可能给出正确结果,因为在其他场合这个方法很成功。另一方面,恒定电场与缓变电场的区别实在很小。若一电场不是变化得很缓慢,而是以一(比方说)很接近轨道频率的频率在变化,那末,我们知道,谐振当然并不是在外电场频率等于轨道频率时发生,而是当它等于在光谱中观察到的、由跃迁决定的频率时发生。
当我们讨论这问题时,最后玻尔试图解释说,一当电场随时间变化时,辐射力便出现,因而用经典方式把结果算出来大概就不可能了。但同时他当然会看到,在这一点上求助于辐射力是有些不自然的。所以我们很快便倾向于认为,分立定态的力学模型中必定有点什么东西是错误的。还有一篇非常关键性的论文没有提到。那是泡利关于
离子的一篇论文。泡利想过,如果有一个像氢那样具有周期轨道的明确模型,我们也许能应用玻尔…索末菲量子化规则,但对于一个复杂的模型,比方说氦原子,其中有两个电子绕原子核运动,那就恐怕不能应用了,因为这时我们将碰到三体问题中的一切可怕的数学困难和繁冗。另一方面,若有两个固定中心,两个氢核和一个电子,则电子的运动仍然是很好的周期运动,且可以计算出来。对于其他,这模型已经是太复杂了,所以它可用来作为一种校验,看看旧规则是否真的在这样一种中间状况下适用。泡利把这模型算了出来,发现他的计算果然得不出
。的正确能量。因此对于用经典力学计算分立定态的疑虑增加了,而注意力越来越转到了定态之间的跃迁。我们已经懂得,为了获得现象的完整解释,只算出能量是不够的,还必须算出跃迁几率。我们从爱因斯坦
1918年的论文知道,跃迁几率是规定为与始态、终态两个态有关的量。玻尔曾在其对应原理中指出,跃迁几率可以与电子轨道博里叶展开式的高次谐波的强度联系起来,从而加以估计。想法是:每条谱线对应于电子运动展开式的一个傅里叶分量,由其振幅的平方便可算出强度。当然,这强度不能与爱因斯坦的跃迁几率马上联系起来,但是它与之有关,因此可对爱因斯坦的量作某种估计。循此思路,注意力逐渐从定态的能量转移到定态之间的跃迁几率,而正是克拉麦斯,开始认真研究原子的色散,并将玻尔模型在辐射时的行为与爱因斯坦系数联结了起来。
在写出色散公式时,克拉麦斯的指导思想是,原子中虚谐振子对应于谐波。之后,克拉麦斯同我还讨论了散射光频率与入射光频率不同的散射现象。在这种现象中,散射光量子与入射光量子不同,因为当散射时原子从一个态跃迁到另一个态。这种现象那时刚被喇曼在带光谱中发现。在这些场合要写出色散公式时,就不单要谈到爱因斯坦的跃迁几率,而且也要谈到跃迁振幅,必须给振幅以相位,并且须将两个振幅相乘——比方说,从态m到态n的振幅乘上从态n到态k的振幅等等,然后对中间态n求和。只有做了这些以后,才得出色散的合理公式。
这样,我们看到,不把注意力集中到定态的能量而是集中到跃迁几率和色散以后,结果得出一条探索事物的新途径。事实上,如我适才所说,克拉麦斯和我写人我们的色散论文中的这些乘积之和,差不多已经就是矩阵之积。从那里只要再走很小一步就可以说,好吧,让我们抛弃电子轨道的整个想法,让我们简单地用相应的矩阵元来代替电子轨道的傅里叶分量吧。我必须承认,在那时我还不知道矩阵为何物,不知道矩阵乘法规则。但我们可以从物理中学到这些运算,尔后发现那正是数学家所熟知的矩阵乘法。
这时我们可看到,与分立定态联系着的电子轨道的概念,实际上已被抛弃了。然而分立定态的概念仍保存着。这概念是必要的,它在观测中有其根据。但电子轨道不能同观测联系起来。所以它被抛弃了,留下的是这些坐标的矩阵。
似乎应当提一下,在1925年发生这些之前,玻恩于1924年在哥丁根讨论班上已强调指出,把量子论的困难单单归诸辐射与力学体系间的相互作用,是不正确的。他宣传了这种想法:力学必须加以改造,必须用某种量子力学来代替,方能提供理解原子现象的基础。之后,矩阵乘法也规定了。玻恩与约尔当,和狄拉克独立地发现,在我第一篇论文中加于矩阵乘法的那些附带条件,实际上可写成qq…qp=h/2πi这样精致的形式。这样一来,他们便能为量子力学建立起一个简单的数学方程。
但即便到这时候,谁也说不出分立定态究竟是什么,所以现在来谈谈我这个报告的第二部分——态的概念。在1925年,确实已有了计算原子分立能量值的方法。并且至少在原则上,也已有了计算跃迁几率的方法。但原子的态是什么呢,怎样才能描述它呢,它不能根据电子轨道来描述。直到此时,态只能用能量和跃迁几率来描述,但原子的图象却一点也没有。何况也很显然,有时还有非定态。最简单的非定态的例子,是穿过云室的电子。因此问题实质上是,怎样处理这种可在自然界中出现的态。穿过云室的电子的径迹这样的现象,能不能用矩阵力学的抽象语言来描述呢?
幸而,那时薛定谔已经发展了波动力学。在波动力学中,事物看起来很不相同。在那里,对分立定态可以定又一个波函数。有一段时候薛定谔想过,分立定态可发展成如下图象:一个三维驻波,它可以写成一个空间因数与一时间周期函数e
iωt的乘积,这个波函数绝对值的平方意味着电子密度。这种驻波的频率则使之等同于光谱定律中的项。这是薛定谔概念中决定性的崭新之点。那些项并不一定意味着能量,却是意味着频率。因此薛定谔走到了分立定态的一个新的“经典”图象,起初他相信,真的可以把这个图象应用于原子理论的。但没多久便看出,那也还是不行。1926年夏,在哥本哈根曾有十分激烈的争论。薛定谔认为,物质按波函数环绕原子核连续分布的原子波动图象,可以代替量子论的旧模型。但是与玻尔讨论导致的结论却是,这种图象甚至不能解释普朗克定律。对这种诠释,十分重要的是应当说,薛定谔方程的本征值不仅代表着频率,——它们实际上是能量。
这样一来,当然就回到了从一个定态到另一定态的量子跳跃的概念,薛定谔对于我们讨论的这种结果十分失望。但即便我们知道了这一点,接受了量子跳跃,我们也并不知道“态”这个词能意味着什么。当然,我们可以试试看,能否用薛定谔方程去描述穿过云室的电子。很快作了这种尝试,结果表明那是不行的。在初始位置时,电子可用波包来表示。波包要向前运动,于是我们获得了有些象穿过云室的电子径迹的东西。但困难的是,波包要越变越大,以致如果电子的行程足够长的话,它就会有一厘米或甚至更大的直径。这肯定不是在实验中观察到的现象,所以这种图象仍然必须抛弃。在这种情况下,当然我们作了许多讨论,而且是很困难的讨论,因为我们都感到,量子力学或波动力学的数学程式已是最终的了。它无法再改变,我们不得不按这个程式进行一切计算。另一方面,却没人知道在这程式中,怎样去表示象穿过云室的电子径迹这样简单的事例。玻恩迈出的第一步是:从薛定谔理论算出碰撞过程的几率:他引进了一个概念:波函数的平方并不是薛宝谔所认为的电荷密度,而是代表在某绘定地点找到电子的几率。
之后狄拉克和约尔当的变换理论也出来了。在这理论中,可以从ψ(q)变换到(比如说)ψ(p),而且很自然地可以认为,平方值|ψ(p)|2
应当是找到动量为p的电子的几率。因此我们逐渐获得这样的概念:波函数的平方意味着某种几率,顺便提一下,这并非三维空间中的波函数,而是在位形空间中的波函数。有了这种认识以后,我们再回到云室中的电子。会不会是我们问了错误的问题,我记得,爱因斯坦告诉过我:“正是理论决定什么是可以观测的。”那意味着,如果认真一点讲,我们不应当问:“我们怎样才能表示云空中电子的径迹?”而应当问:“在自然界中,是否真的只有那些能用量子力学或波动力学表示的情况才会出现?”
围绕这个问题,我们立刻看到,云室中电子的径迹并不是具有明确位置和速度的一条无限细的线,实际上云空中的径迹是一系列点,这些点是由水滴不太精确地确定的,而速度也

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的